
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
Published online 23 November 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.2240
On Fröhlich’s solution for Boussinesq’s problem
A. P. S. Selvadurai*,†

Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, QC, Canada, H3A 0C3
SUMMARY

The concentration factor introduced by O.K. Fröhlich is visualized as a procedure for examining the pattern
of load transfer from surface loads to the interior of a geomaterial. The historical details that led to the
introduction of the concentration factor are scant although it is widely used in the area of soil mechanics
problems associated with tillage-induced soil compaction. The purpose of this note is to examine the
concentration factor in terms of the geomechanics of an elastic continuum and to identify the precise
conditions that are satisfied by the distribution of stresses and strains that accommodate the concentration factor.
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1. INTRODUCTION

Otto Karl Fröhlich (1885–1964) studied engineering at the Technical University of Graz and obtained
his doctoral degree in engineering in 1911. He worked in Berlin, St. Petersburg, Amsterdam and in The
Hague from 1934–1935. His book, entitled, ‘Druckverteilung im Baugrunde. Mit Besonderer
Berücksichtigung der Plastischen Erscheinungen’ [1] was published in 1934 during his stay in
Gravenhage, the Netherlands and dedicated to his teacher A. Föppl. In 1935, he was invited by Karl
Terzaghi to take up the position of lecturer and was appointed Professor of Soil Mechanics and
Geotechnical Engineering at the Technical University of Vienna in 1940. During his tenure at the
Technical University of Vienna, he collaborated extensively with Terzaghi and, in 1936, they
published ‘Theorie der Setzung von Tonschichten’ [2] dealing with consolidation of clay layers. An
extensive account of the disputes between Terzaghi and Fillunger [3] during the publication of this
work is also given by de Boer [4].

The problem of load transfer from a concentrated normal force to an isotropic halfspace region
was first presented by Boussinesq [5] and represents a classical result that is widely used in
geomechanics and applied mechanics [6, 7]. Boussinesq’s approach for solving the problem of
the loading of a halfspace by a concentrated normal force (Figure 1) takes into account all the
equations governing the classical theory of elasticity and the relevant boundary conditions and
regularity conditions. The solution is obtained by appeal to results of potential theory and yields
an exact closed form solution for the displacements and stresses within the halfspace region. An
alternative approach to the development of the problem was presented by Selvadurai [8, 9], and
the classical result by Mindlin [10] represents the generalized result from which both
Boussinesq’s solution for the problem of the normal loading of the surface of a halfspace region
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Figure 1. Boussinesq’s problem for an isotropic elastic half space.
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by a concentrated force and Kelvin’s solution [11–13] for the interior loading of an isotropic elastic
halfspace by a concentrated force can be recovered as special cases. Studies dealing with this class
of fundamental solutions are quite extensive, and the applications have been extended to include
both anisotropy and heterogeneity of the elastic medium [14–17].

The concept of a ‘concentration factor’ (n) for the study of the pattern of load transfer to the interior
of an isotropic elastic halfspace region appears to have been first proposed by Griffith [18] (see also
Soehne [19] and Dexter et al. [20]) and introduced and documented in the book by Fröhlich [1].
The ability to alter the distribution of the load transfer pattern in the interior of the halfspace
region through the alteration of a single coefficient was a major attraction of the theory, and
for the specific value of the ‘concentration factor’, n = 3, Boussinesq’s solution is recovered.
The physical basis for the ‘concentration factor’ was, however, not provided by Fröhlich [1].
Ohde [21] and Borowicka [22] indicate that in addition to the limit of n = 3, the case n = 4
corresponds to an elastic halfspace region where the linear elastic shear modulus varies linearly
with depth. The result of Borowicka’s study [22] involves an infinite series solution in terms
of the Poisson number. The complete solution to the problem of the surface loading of an
isotropic elastic halfspace with a linear variation of the linear elastic shear modulus was first
solved by Gibson [23] (see also [7, 24–27]). Ohde [21] arrives at a relationship between the
‘concentration factor’ n and Poisson’s ratio ν in the form n = (1 + ν� 1), giving the result n = 3,
which is required for the solution to reduce to Boussinesq’s classical result for the special case
of an incompressible elastic material. Returning to Fröhlich’s result, Terzaghi [28],
Tschebotarioff [29], Jumikis [30] and Széchy and Varga [31] present arguments that also
follow those presented by Ohde [21] with regard to the depth-dependent variation of the elastic
moduli. Application of the concept of depth-dependent nonhomogeneity and its connection to
Fröhlich’s concentration factor is also presented by Klein [32] (see also Koronev [33]).

The resurgence in the interest in the application of Fröhlich’s concentration factor is largely due to
the potential applicability of the result to explain the deviations in the stress transfer at depth due to the
effects of soil compaction. Measurements of stress distribution within soil masses during the
application of surface loads have been documented by several investigators, and a recent review
with applications to mechanics of soil tillage is given by Keller et al. [34]. At the outset, it should
be remarked that the measurement of stresses within soil masses using embedded contact pressure
cells is a difficult exercise, largely due to the fact that the cell-action factor that is needed to
correctly interpret the stress state will be governed by a variety of responses including the
constitutive relationship for the soil itself. Extensive reviews of contact stress measurement and the
development of techniques for the interpretation of results from soil pressure cells are given by Hast
[35], Hvorslev [36], Selvadurai [37], Hanna [38] and Selvadurai et al. [39]. The results derived from
embedded pressure cells are considerably more difficult to interpret than data from pressure cells
that are located at a rigid boundary. For this reason, the experimental results themselves can be
prone to incorrect interpretation. Regardless of this limitation, the result of Fröhlich’s study [1] is
extensively used in current approaches to examining compaction-induced alterations of the soil
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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BOUSSINESQ’S PROBLEM 927
fabric and its load transfer capabilities. The theoretical developments of Fröhlich therefore merit further
discussion so that its basis can be examined in the context of theoretical geomechanics.
2. BOUSSINESQ’S PROBLEM

We consider the problem of the concentrated normal force PB that is applied at the surface of a semi-
infinite medium (Figure 1). In the case where the semi-infinite solid is an isotropic elastic continuum,
this corresponds to Boussinesq’s classical problem that can be developed using a variety of
approaches. These are discussed in several recent articles (e.g. Timoshenko and Goodier [40], Little
[41], Davis and Selvadurai [6], and Selvadurai [7, 8]). For example, the formal integral expressions
[42] for the nonzero displacements components, ur(r,z) and uz(r,z), which were referred to the
cylindrical polar coordinate system, take the forms

ur r; zð Þ ¼ PB

4πμ
∫∞0 1� 2νð Þ � ξz½ � exp �ξzð ÞJ1 ξrð Þdξ (1)

uz r; zð Þ ¼ PB

4πμ
∫∞0 2 1� νð Þ þ ξz½ � exp �ξzð ÞJ0 ξrð Þdξ (2)

where J0 and J1 are, respectively, the zeroth-order and first-order Bessel functions of the first kind, μ is
the linear elastic shear modulus and ν is Poisson’s ratio. Taking into consideration the direction of
application of the Boussinesq force, these results can also be expressed in spherical polar
coordinates (Selvadurai [7–9]) in the forms

2μuR ¼ PB

2πR
4 1� νð Þ cosΘ� 1� 2νð Þ½ � (3)

2μuΘ ¼ PB sinΘ
2πR

� 3� 4νð Þ þ 1� 2νð Þ
1þ cosΘð Þ

� �
(4)

where r=R sinΘ, z =R cosΘ with R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p� �
∈ 0;∞ð Þ and Θ ∈ (0, π/2). By appeal to the

constitutive equations governing classical elasticity, the state of stress in the halfspace region can be
determined uniquely from these results. As is evident, the displacements satisfy the regularity
conditions necessary and sufficient to ensure uniqueness of the solution. Similarly, the stress state
derived from (1) to (4) also satisfies the equations of equilibrium, the regularity conditions and the
traction boundary conditions at the surface z = 0. Furthermore, the singularities in the stress state are
integrable and contribute to a traction resultant identical to the force vector applied at the surface of
the halfspace.
3. THE CONCENTRATION FACTOR

In this note, we focus attention on the result for the transfer of a concentrated normal force acting
on the surface of a halfspace presented by Fröhlich [1], with specific reference to the exposition
dealing with the transmission of stress within a halfspace region loaded at the surface by a
concentrated normal force. The spatial decay of the stress as predicted by the classical theory
of elasticity is found to be at variance with experimental observations of vertical stress
distributions, in particular within geomaterial regions. The work of Fröhlich [1] is an empirical
development, which adjusts the form of the vertical stress σzz(r,z) because of Boussinesq’s
solution by introducing a ‘concentration factor n’, which allows the alteration of the decay
pattern to suit an experimentally observed pattern. In the ensuing, we shall retain the
presentation of Fröhlich [1] but replace the concentration factor ν by n to avoid confusion with
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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Poisson’s ratio ν. It should be remarked at the outset that this semi-empirical modification is
proposed only for incompressible (v = 1/2) elastic materials. (It should be noted that the ‘limit
of elastic incompressibility’ has rigorous mathematical and energetic bases because Poisson’s
ratio for isotropic elastic materials occupies the range � 1≤ ν≤ 1/2 [9]. The constraint based
on incompressibility is quite independent of the kinematic constraint based on compatibility of
strains, which is a necessary and sufficient condition for the integrability of the strain–
displacement relations to yield a unique displacement field.)

An inspection of the results by Fröhlich [1] indicates that the stress state reduces to a
particularly simple form in the limit of elastic incompressibility. The mathematical basis for
introducing this concept is lacking, in the sense that there appears to be no formal linear
solution of the equations governing the classical theory of elasticity that will yield a solution to
Boussinesq’s problem for the action of a concentrated force PB normal to the surface of a an
elastic halfspace in the form

σzz r; zð Þ ¼ � nPB zn

2πRnþ2 ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
(5)

The remaining stress components have been evaluated as follows:

σrr r; zð Þ ¼ � nPB r2zn�2

2πRnþ2 ; σθθ ¼ 0 ; σrz ¼ � nPB r zn�1

2πRnþ2 (6)

It can, however, be verified that, in the absence of body forces, the stress state defined by (5) and (6)
also satisfies the nontrivial axisymmetric equations of equilibrium expressed in cylindrical polar
coordinates:

∂σrr

∂r
þ ∂σrz

∂z
þ σrr � σθθ

r
¼ 0

∂σrz

∂r
þ ∂σzz

∂z
þ σrz

r
¼ 0

(7)

and it can also be verified that on any plane z = const.,

∫∞0 ∫
2π
0 σzz r; zð Þ r drdθ þ PB ¼ 0 (8)

indicating that vertical equilibrium is satisfied at any plane z = const. within the halfspace region.
Similarly, it can be shown that on any cylindrical surface r> 0,

2πr∫∞0 σrz r; zð Þ dzþ PB ¼ 0 (9)

The results (8) and (9) are valid irrespective of the concentration factor n. Also, the classical
Boussinesq’s solution for σzz(r,z) in an incompressible elastic medium is recovered when n = 3.
Typical results for the distribution of the axial stress |σzz(r,z)| for various values of n are shown
in Figure 2. (Boussinesq’s problem has no length parameter associated with it; consequently, a
length parameter a is introduced to enable the presentation of the results in a nondimensional
form.) Because the interpretation of the concentration factor-based analysis in terms of classical
elasticity is valid only for n = 3; for any other choice of n, the solution should deviate from
classical elastic behaviour, which satisfies only the equations of equilibrium but may not,
in general, satisfy other equations applicable to classical elasticity. The objective of this note is to
examine whether all governing equations of compatibility applicable to strains (Timoshenko and
Goodier [40]; Davis and Selvadurai [6]; Selvadurai [8]) are satisfied to provide validity to the
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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Figure 2. Influence of the concentration factor n on the distribution of axial stress σzz(r,z).
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continuum concept. In Cartesian notation, the Beltrami–Michell equations of compatibility applicable
to a continuum region take the form

∂2εij
∂xk∂xl

þ ∂2εkl
∂xi∂xi

¼ ∂2εik
∂xj∂xl

þ ∂2εjl
∂xi∂xk

(10)

Alternatively, in generalized tensor notation, the result (10) is equivalent to

∇� ε� ∇ ¼ 0 (11)

where ε is the linearized strain tensor referred to the appropriate coordinate system, ∇ denotes the
gradient operator and � denotes the cross product. A mathematical interpretation of the
compatibility conditions relates to the vanishing of the Riemann-Christoffel tensor, which for
infinitesimal strains gives rise to (11) and a physical interpretation is given in Figure 3, where the
simply connectedness of the domain is preserved during the deformation.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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Figure 3. The concept of strain compatibility, which ensures the sequence of the positions of A,B,C and D.
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Considering a cylindrical polar coordinate system (r,θ,z) and a state of axial symmetry characterized
by the displacement field {ur(r,z), 0, uz(r,z)}, it can be shown that the nonzero components of the
linearized strain tensor,

ε ¼
εrr 0 εrz
0 εθθ 0

εrz 0 εzz

0B@
1CA ¼

∂ur
∂r

0
1
2

∂ur
∂z

þ ∂uz
∂r

� �
0

ur
r

0

1
2

∂ur
∂z

þ ∂uz
∂r

� �
0

∂uz
∂z

0BBBBBB@

1CCCCCCA (12)

should satisfy the four compatibility equations

∂2εθθ
∂z2

� 2
r

∂εrz
∂z

þ 1
r

∂εzz
∂r

¼ 0 (13)

∂2εrr
∂z2

� 2
∂2εrz
∂r∂z

þ ∂2εzz
∂r2

¼ 0 (14)

∂2εθθ
∂r2

þ 2
r

∂εθθ
∂r

� 1
r

∂εrr
∂r

¼ 0 (15)

∂
∂z

∂εθθ
∂r

þ 1
r
εθθ � εrr½ �

� �
¼ 0 (16)

Considering the stress state given by (5) and (6) and Hooke’s law applicable to an incompressible
isotropic elastic material, it can be shown that

εrr ¼ � nPB

4πERnþ2 2r2zn�2 � zn
� �

; εθθ ¼ nPB

4πERnþ2 zn þ r2zn�2
� �

εzz ¼ � nPB

4πERnþ2 2zn � r2zn�2
� �

; εrz ¼ � nPB

4πERnþ2 3r zn�1
� � (17)

It can be noted that the strain field (17) satisfies the incompressibility constraint

tr ε ¼ εrr þ εθθ þ εzz ≡ 0 (18)

for any choice of n. As noted previously, the incompressibility condition is obtained through a
constitutive constraint rather than a kinematic constraint on the solution. Substituting (17) in (13) to
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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BOUSSINESQ’S PROBLEM 931
(16), it can be shown that the compatibility equations will be satisfied if and only if n≡ 3 and the
compatibility equation is violated for all other values of n.

It would appear that Fröhlich’s modification to Boussinesq’s result to account for either
concentration or diffusion of the load transmission pattern is a statically admissible solution but an
incomplete result that violates the kinematics of deformation of a continuum. In hindsight, it is clear
that if Fröhlich’s solution for Boussinesq’s concentrated force problem (which completely satisfies
all the governing equations of classical elasticity, including equilibrium, compatibility and the
constitutive equations of linear elasticity) is recovered only when n≡ 3, then from consideration of
Kirchhoff’s uniqueness theorem in classical elasticity (Knops and Payne [43], Davis and Selvadurai [6],
Selvadurai [9], Gurtin [44], Podio-Guidugli and Favata [45]) the solution must violate one or more of
the governing equations when either n< 3 or n> 3. We have shown that the equations of equilibrium
are satisfied for all choices of n; consequently, the compatibility equations must be violated for all
choices of n≠ 3. The implications of violation of the compatibility conditions present itself in a
nonuniqueness of the integration of the strain–displacement equations when determining the
displacement components ur(r,z) and uz(r,z). For example, the displacement component ur(r,z) can be
directly determined using the results for εθθ in (12) and the stress state (5) and (6);, that is,

ur r; zð Þ ¼ nPBr zn�2

4πERn (19)

We can also obtain an expression for ur(r,z) by integrating the result in (12) for εrr, which gives

ur r; zð Þ ¼ PBr zn�2

4πERn 3þ n� 3ð ÞRn

zn 2F1
2 1
2
;
n

2
;
3
2
;� r2

z2

� ��
þ G z; nð Þ

�
(20)

where 2F1[a,b,c,d] is the hypergeometric function (Abramowitz and Stegun [46]) and (20) is
indeterminate to within G(z,n) an arbitrary function of z, which can be evaluated through an
integration of the expressions for εzz and substituting the resulting expression for uz(r,z) and the
expression (19) for ur(r,z) into the expression for εrz. For the present discussion, it is sufficient to
consider the expressions (19) and (20); it is clear that the two expressions are distinctly different for
n≠ 3, and when n = 3, both expressions reduce to

ur r; zð Þ ¼ 3PB r z

4πE r2 þ z2ð Þ3=2
(21)

which is identical to Boussinesq’s solution for the radial displacement in an incompressible elastic
halfspace due to the action of the concentrated normal force. From (20), it is also abundantly clear
that the arbitrary function G(z,n) cannot produce a solution for n≠ 3, which will completely
eliminate the second term within the brackets in (20) to yield the result (21).

Similarly, the result for εzz can be integrated with respect to z, which gives

uz r; zð Þ ¼ nPB zn�1

4πE n2 � 1ð Þrn

�
nþ 1

� �
2F1

n� 1
2

;
n

2
;
nþ 1ð Þ
2

;�z2

r2

� ��
�3 n� 1ð Þ z2

r2

� �
2F1 1;

3� n

2
;
3
2
;�z2

r2

� �
0BBB@

1CCCAþ F r; nð Þ (22)

where F(r,n) is an arbitrary function arising from the integration with respect to the variable z. In the
specific case when n = 3, (22) reduces to

uz r; zð Þ ¼ 3PB

4πE
r2 þ 2z2

r2 þ z2ð Þ3=2
!

� 3PB

4πE
1
r

� �
þ eF rð Þ (23)

where eF rð Þ depends on the variable r. The leading term on the right-hand side of (23) corresponds to
Boussinesq’s solution, and two additional terms are encountered in the reduction to the classical case.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:925–934
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Figure 4. Loss of simply-connectedness in a particulate domain.
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Without loss of generality, the arbitrary function eF rð Þ can, however, be chosen such that Boussinesq’s
solution is recovered in the limit when n = 3. The detailed evaluation of the arbitrary functions G(z,n)
and F(r,n) is possible, but these results are not central to the basic theme of the paper. It is sufficient to
note that there is nonuniqueness in the evaluation of the displacement components from the integration
of the strain–displacement relations, and this stems from the violation of the equations of compatibility,
which are necessary and sufficient for the purposes of integration of the relevant equations.
4. CONCLUDING REMARKS

The concept of a concentration factor was introduced by Fröhlich, with the genuine intention of
providing an approach that can account for the departure of observed results from predictions made
using the results based on the classical theory of elasticity. In particular, the exact analytical solution
for Boussinesq’s problem for an isotropic elastic halfspace region is used to calibrate the
‘concentration factor’, n, which can alter the shape of either the spreading or the concentration of
the load at depth. At the outset, it is clear, from Kirchhoff’s uniqueness theorem in classical elasticity
[6, 9, 43–45], that if Fröhlich’s result converges to Boussinesq’s result for n≡ 3, the solution will not
satisfy all the governing equations of elasticity when n≠ 3. The results presented in the paper indicate
that Fröhlich’s solution satisfies the equations of equilibrium, the boundary conditions and the stress–
strain relations applicable to incompressible elastic materials but violates the equations of compatibility
applicable to continua. This manifests in the form of a nonuniqueness in the displacement field obtained
through the integration of the strain–displacement relations. Alternatively, if the kinematical relationships
are not satisfied by Fröhlich’s result, then the halfspace region must exhibit traits of a discontinuum
similar to that of a particulate medium. It would also imply that the stress state associated with Fröhlich’s
solution is one that could be described by appeal to particulate mechanics similar to discrete element
techniques, where the particle shape and reorientation can influence the stress transfer process. Figure 4
shows a typical configuration of a particulate medium where during deformation, an originally simply-
connected configuration transforms to a multiply connected domain. Admittedly, substantial
displacements of particles are needed to violate the simply-connectedness of an initial configuration.
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